
Random Number Generation in CoinPoker

Mike A. Segal, CoinPoker Advisor

2018 March 29

Last Updated: 2018 July 11

1 Introduction

The purpose of this document is to explicate a protocol for the provision

of secure and provably fair poker games on the CoinPoker platform, and is

based on the work done with the CoinPoker team on 2018 March 27-29.

There exist two classes of solutions: those which rely upon a trusted

third-party, and those which operate in a peer-to-peer or serverless capacity

or which place limited trust value in the server.

This document focuses on a proposal for the first type of solution which

was ultimately selected for implementation in CoinPoker. We provide a high-

level specification for the protocol and implementation notes where applica-

ble.

1



2 Verifiable RNG with Trusted Third-Party

If there exists a third-party who is trusted to maintain the secrecy of the

RNG seed, then we can enable users to verify the fairness of the RNG via a

simple commitment protocol.

2.1 Protocol Description

Let O denote the trusted third-party, a.k.a. the Operator.

Before each hand of poker begins, let N be the number of players who

will participate in the upcoming hand and denote the players P1, . . . ,PN .

Let H be a cryptographic hash function. For the purpose of this imple-

mentation, it is recommended thatH be set to the KECCAK-2561 Sponge-

based hash function, which is the same secure cryptographic hash function

used throughout the Ethereum protocol.2

The participants proceed as follows:

1. O instantiates a pseudorandom number generator (PRNG)3 seeded

with a secret seed rinit.4 5

1https://keccak.team/keccak.html
2It should be noted that the KECCAK-256 implementation used by Ethereum differs

slightly from the SHA-3 hash function standarized by NIST in FIPS-202 2015. They have

identical security properties, but for compatibility with Ethereum, it is recommended that

this implementation use the original KECCAK-256 proposal.
3The SIMD-oriented Fast Mersenne Twister (SFMT) specified in the CoinPoker

whitepaper is a suitable choice of PRNG.

See: http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/SFMT/
4The seed need not actually be random, but it must be unpredictable to players. It is

common to use the server clock as a PRNG seed, which is sufficient for this use case, but

we must ensure that it uses millisecond (or smaller) time resolution—second resolution is

not good enough!
5The value of rinit is ephemeral. Once the PRNG has been instantiated, it should be

forgotten by O.

2

https://keccak.team/keccak.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/


2. For each card value6 di, the operator uses the PRNG from Step 1 to

generate a random salt value7 ai, and computes card commitments

ei := H(ai‖di).8

3. Beginning with a deterministically ordered (i.e. unshuffled) deck, O
uses the same PRNG from Step 1 to run the Fisher-Yates-Durstenfeld

shuffling algorithm9 to derive a shuffled deck Dinit, which consists of the

card values di in shuffled order. We define pinit to be the permutation

on the indices i representing the shuffled order of Dinit.

4. O constructs the initial deck commitment vector einit := {epinit(i) | 0 ≤ i < 52}
consisting of the card commitments ei in the same order as Dinit. O
sends the card commitment vector einit to all players P1, . . . ,PN .

5. Each player Pi generates a 256-bit random seed si.
10

6. Each player Pi computes ci := H(si) and sends the value ci to O.

6The card values can be represented using the first 52 unsigned integers [0..52).
7Salts should be fixed-length values of at least 32-bits in length.
8The plaintext card value di must be included as an input to this hash commitment to

ensure that O cannot switch the cards later. The salt ai is also needed to prevent players

from reversing the hash operation by brute force.
9The Durstenfeld optimization to the Fisher-Yates shuffling algorithm is described in

pseudo-code here: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_

shuffle#The_modern_algorithm
10In this and all subsequent sections, we prescribe that client-side random numbers

should be generated by the client operating system’s non-blocking random number gener-

ation faculty. In particular, never rely on libraries that generate random numbers compu-

tationally.

3

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm


7. If a player Pi is not present (i.e. offline), Pi delivers an invalid value

to O11, or Pi fails to deliver any value to O within a specified time

interval, then O sets si := i and computes ci := H(si).
12

8. O then generates a 256-bit random seed s0 and computes c0 := H(s0).

9. O sends all players P1, . . . ,PN the commitment vector c := {ci | 0 ≤ i ≤ N}.

10. Upon receiving c, each player Pi sends si to O.

11. If a player Pi who participated in Step 5 is not present (i.e. offline) or

fails to deliver a valid value to O within a specified time interval, then

the Operator must deliver an Abort message to all players and restart

the protocol.13 14

12. O computes the aggregate seed s∗ := H(s0‖ . . . ‖sN).

13. O instantiates a new pseudorandom number generator (PRNG) seeded

with s∗.

14. Beginning with the initial deck Dinit, O feeds the values generated

by the PRNG from Step 13 to the Fisher-Yates-Durstenfeld shuffling

11As we are using a 256-bit hash function, a valid commitment value consists of any

256-bit string.
12O can set any fixed value for si, but should not select a random or nondeterministic

value so as to provide transparency about the lack of entropy contributed by Pi.
13To prevent denial of service attacks, the Operator may choose to exclude a player who

repeatedly aborts the protocol at this stage from contributing entropy to future iterations

of the protocol. In such cases, the player should be treated as if they failed to deliver the

commitment value as in Step 7.
14Note that it is not sufficient for O to generate a new si and continue the protocol at

this stage. In addition to causing the verification to fail, this would permit O to compute

a seed value that generates any possible card sequence, since O is already privy to the

players’ seeds.

4



algorithm to derive the final shuffled deck Dfinal. We define pfinal to be

the permutation representing the transformation of Dinit into Dfinal.

15. The hand is then played to completion using the shuffled deck Dfinal

from the previous step.

16. Upon completion of the hand, O sends all players P1, . . . ,PN the seed

vector s := {si | 0 ≤ i ≤ N}.

17. Privately, each player uses s to compute s∗ and pfinal. Each player then

applies pfinal to the card commitment vector einit from Step 4 to derive

the final vector of card commitments efinal := {epfinal(pinit(i)) | 0 ≤ i < 52}
consisting of the card commitments ei in the same order as Dfinal.15

18. Upon completion of the hand, O also sends each player Pk the salts ai

corresponding only to those cards which Pk has seen in the course of

the hand.

19. Each player Pk then independently verifies:

(a) That the value of sk in the received seed vector s matches the

value of sk generated in Step 5.

(b) That ci = H(si), for all 0 ≤ i ≤ N .

(c) By applying the salts from Step 18 to card values and comparing

with efinal: That all cards seen by Pk in the course of the hand16

match the corresponding positions in Dfinal.

15To be clear, the players are not privy to pinit, but they can apply pfinal to the initially-

ordered einit to derive card commitments in the final ordering.
16To be as comprehensive as possible, this should include private cards, community

cards, and any cards revealed during the hand, such as mucked cards, face-up burnt cards,

and any cards revealed in the showdown.

5



2.2 Consideration

To aid in the verifiability by end-users of the design and implementation

of the protocol, it is recommended that the parts of the client responsible for

executing the above protocol be encapsulated in an open source module that

is capable of being independently compiled and linked to the client.17

17In this scenario, the closed source portion of the client software is considered to belong

to the Operator O. The open source module responsible for random number generation

and verification should not share any data with the closed source client unless and until

it is ready to share that data with the server.

6


	Introduction
	Verifiable RNG with Trusted Third-Party
	Protocol Description
	Consideration


